ECON 133 – Securities Markets – FALL 2010, UCSC

Practice Questions for Midterm 2

Question 1

Calculate the price and duration of the following bonds:

a) 3 year, 3% coupon, 4.5% YTM, compounded quarterly.

PV=CF[] = 1.5 [] PV=#95	$-\left(\frac{1}{1+v}\right)^{n}$ $-\left(\frac{1}{1.0 12}$ $0.0 12 $ 0.12490	$\frac{1}{5} + PAR \times \frac{1}{(1+t)^{h}} + 1000 (\frac{1}{1.0005})^{12}$	
七一23456789101	CF 1.5 1.5 1.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	<u>b.V(cF)</u> 7.416563659 7.334055534 7.252465299 7.01782744 7.091997269 7.013100369 6.935080731 C.85792907 6.781635629 6.70619098 6.631585429	$\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}$
12 duration =	1007.5	<u>280.932513754</u> Z=958.1249012	11.03320679 Z= 11.50759261

11.507 59261/4=

b) 4 year, 5% coupon, 3% YTM, compounded at	annually.
---	-----------

PV=1074.341968	p= 50	$\sum_{i=1}^{n} \left(\frac{1}{1,03}\right)^{4} \left[\frac{1}{1+10}\right] + \frac{1}{10}$	$= \frac{1}{2} \left(\frac{1}{1 \sqrt{2}} \right) \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \sqrt{2} \right) \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \sqrt{2} \sqrt{2} \right) \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \right) \frac{1}{2} \left(\frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $	1074.341968
D= 3.73411841	t CF	PV(CF)	WE	t(WE) D451 84578
	1 50	48.543681520 47.129795457	0.043868523	.087737046
	3 50	45,757082968	0,042590799	3. 47. 3424 396
Tote	4 59 21	1074.341968056	1,00	3. 734118418

c) 2 year, 8% coupon, 8% YTM, compounded semiannually.

PV=	,000		
t	CF	<u>PV(CF)</u>	t(wt)
l	40	38.461530462	0.038441538
2	40	36.982248521	0.073964497
3	40	35.559854342	0.106679563
4	1040	080.994350611	3.555985435
		5 = 1000.00	5= 3.775091034

3.775091034/2 = Duration= 1.987545517 yrs

Question 2

You are the principal investment adviser to an endowment trust fund and are analyzing a variety of bonds for potential purchase. You are looking at a 4 year, 9.5% coupon bond (payable semiannually), with a 10% yield to maturity.

a) Without doing any calculations determine whether this is currently a premium, par, or a discount bond?

```
Discount, because coupon rate < YTM
```

b) What is the purchase price of this bond?

$$P = \frac{1000 \times 0.095}{2} \left[\frac{1 - (1.05)^8}{0.05} \right] + 1000 \times \frac{1}{(1.05)^8}$$

$$P = \frac{1}{2} \frac{983.841968102}{1000}$$

c) Using duration table, compute the bond's duration.

	t <u>CF</u>	PV(CF)	WE.	E(ve)
	1 47	5 45,238095238	0.045981059	0.04 59 810 59
	2 <i>4</i> +.	5 43.08 3900227	0.043791484	0.087582969
	3 47	5 41.082285930	0.041706176	0.12511 8527
	4 . 47.	5 39.078367553	0.034720167	0.151880669
	5 47.	5 37,217492907	0.037828731	0.189143654
	6 47.	5 35.445231340	0.036027363	0.216164176
i	7 47,	5 33. 75736318	0.034311774	0,240182417
	8 1047,9	5 708. 959231725	0.720633247	5.765065974
Total		983, 8419681	1.00	6. 828119444
	D= annuel	6.828119444		
	Pannal	- 3. 414059721		

d) Assuming that you purchase this bond, and yields immediately rise to 12%, what is the bond's new price?

$$P = 922.3715114$$
since $PV = 47.5 \left[\frac{1}{.06} \right] + \frac{1000}{(1.06)^8}$

e) What is the bond's holding period yield for that year?

$$\frac{\text{HPR} = \text{Final Price} - \text{Initial Price}}{\text{Initial Price}} = \frac{922.3775174 - 983.04196011}{903.04196011} = \left[-6.2473045\%\right]$$

f) How would you immunize yourself from potentially adverse yield changes?

g) Using modified duration, estimate the bond price change from the rise in rates from 10% o 12%.

$$\Delta P = -D^{*}(\Delta Y)(P) \quad D^{*} = \frac{D}{1+Y} \Rightarrow \frac{3.41405972}{1.1} = 3.103690655$$
$$\Delta P = -(3.103690655)(0.02)(963.6419661)$$
$$\Delta P = -61.67082244$$

h) How does this compare to your answer in part d)? What account for the difference if any?

Question 3

Compute the intrinsic value of the following equity securities.

a) Stock ABC pays a constant dividend of \$0.35. The stock's required rate of return is 12.5%.

$$V_0 = \frac{D}{k} = \frac{$0.35}{.125}$$

 $V_0 = 2.8

b) Stock DEF pays a current dividend of \$1.00 and has an expected growth rate of 10%. The stock's required rate of return is 12.5%.

$$V_{0} = \frac{P_{0}(1+\frac{3}{4})}{1c-\frac{3}{4}} = \frac{\pm loo(1,1)}{(0.125-0.1)}$$

$$V_{0} = \pm \frac{440}{10}$$

c) Stock XYZ has current EPS of \$2.75 and has a retention rate of 60%. The stock's expected growth rate is 5% for the first two years and 10% thereafter. The required rate of return is 15%.

$$V_{0} = \frac{\overline{J}^{2} \cdot \mathcal{D}_{0}(l+q_{1})^{4}}{(l+k_{1})^{4}} + \frac{l}{(l+k_{1})^{4}} \frac{\mathcal{D}_{n+l}}{(l+k_{1})^{4}}$$

$$= \frac{\mathcal{D}_{0}(l+q_{1})}{(l+k_{1})} + \frac{\mathcal{D}_{0}(l+q_{1})^{2}}{(l+k_{1})^{4}} + \frac{l}{(l+k_{1})^{2}} \frac{\mathcal{D}_{0}(l+q_{1})^{2}(l+s_{2})}{k-q_{1}}, \text{ where } \mathcal{D}_{1} = EPS(l-b)$$

$$= \frac{l \cdot l(l\cdot05)}{(l\cdot05)} + \frac{l \cdot l(l\cdot05)^{2}}{(l\cdot05)^{2}} + \frac{(l\cdot05)^{2} \cdot (l\cdot1)(l\cdot1)}{(l\cdot05)^{2} \cdot (0.05)} = l\cdot1$$

$$V_{0} = \frac{l}{22} \cdot 0.095$$

Question 4

XXX stock has a stable expected standard deviation of 20%. Regression analysis shows that the R-squared between the stock price and the market is 36%. XXX has a corporate policy of retaining 25% of its earnings for reinvestment in the company's operation. The company has ROE of 15%. The company's current EPS is \$3.50. The broad market is expected to return 18%, with a standard deviation of 15%. The risk free rate of return is 5%, while the current borrowing rate is 7%. The stock is trading at \$30/share currently.

a) Compute the intrinsic value of the following stock, determine if it is over-, under-, or fairly-valued. What is your trade recommendation?

$$S_{k} = .3, R^{2} = .36 d = .25, ROE = .15, EPS = $3.50$$

$$E(r_{m}) = .18, S_{m} = .15, P_{s} = $30, r_{f} = .05, S_{barrow} = .02$$

$$O = ROE(1 - d_{Pr}) = .15(.25) = .0375; O = \frac{3}{8n} \frac{B_{s} = Cov(k_{s},m)}{Var(m)} = \frac{\sigma_{L}\sigma_{m}}{\sigma_{m}} = \frac{\sigma_{L}}{\sigma_{m}} R_{k_{s},m} = .8$$

$$O = EPS(d_{Pr}) = $3.50(.75) = $2.625 \oplus k = r_{f} + B[ECV_{m}] - r_{f} = .05 + .8(.13) = .154$$

$$V_{0} = \frac{D_{i}}{k - g} = \frac{P_{0}(1 + g)}{k - g} = $2.625(1.0375) = $23.37714592 = V_{0} < P_{0} = $30$$

$$Recommed: Sell; because overvalued.$$

b) The board of directors of XXX has voted to increase its retention ratio to 40% after year3. What impact will this have on the stock price when this is announced?

That means
$$q_{z} = ROE(d_{z})$$

= .15(.4)
= .06
So, after year 3 administrats are aspected to grow at 6%, as approximat to
the current 3.75%.
 $V_{0}' = \sum_{t=1}^{3} \frac{P_{0}(1+q_{t})^{2}}{(1+k_{t})^{t}}, \frac{1}{(1+k_{t})^{t}} \frac{P_{t+1}}{k_{t}}$
 $= \frac{P_{1}}{1+k_{t}} + \frac{P_{z}}{(1+k_{t})^{2}} + \frac{P_{3}}{(1+k_{t})^{3}} + \frac{1}{(1+k_{t})^{3}} \frac{D_{4}}{k_{t}}$
 $= \frac{P_{0}(1+q_{1})}{(1+k_{t})} + \frac{P_{0}(1+q_{1})^{2}}{(1+k_{t})^{2}} + \frac{P_{0}(1+q_{1})^{3}}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{2}} + \frac{P_{0}(1+q_{1})^{3}}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{3}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{4}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{5}(1+q_{1})^{3}}{(1+k_{t})^{3}} + \frac{P_{5}(1+q_{1})}{(1+k_{t})^{3}} + \frac{P_{5}(1+q_{1})}{(1+k_{t$

Question 5

You are a bond analyst and have estimated the following forward yields based on upon your survey of expectations in the marketplace:

2 year forward rate, one year from now = 5%	16 = 05
2 year forward rate, three year from now = 7%	$3r_{2}^{3} = 07$
1 year forward rate, two years from now = 6%	21, =,06
1 year forward rate, four years from now = 9%	415 = .09
You also notice that the one year spot rate is $= 3\%$	09 = 03

a) Based upon the information given above, draw a timeline that indicates the current term structure of interest rates.

b) Using this information, construct the appropriate yield curve, labeling all axes, and relevant points.

