Markets Update

"Dow Tops 11000" WSJ, Oct. 8

"Bond Investors Await Fed's Move "WSJ, Oct. 8 Two-Year, Five-Year Yields Scrape New Lows on Policy BetS

Markets Update

Markets Update

Chapter 6 Efficient Diversification (Cont'd)

McGraw-Hill/Irwin

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

Covariance and correlation

- The problem with covariance
 - Covariance does not tell us the intensity of the comovement of the stock returns, only the direction.
 - We can standardize the covariance however and calculate the correlation coefficient which will tell us not only the direction but provides a scale to estimate the degree to which the stocks move together.

The correlation coefficient

 Standardized covariance is called the correlation coefficient or ρ

$$\rho_{(1,2)} = \frac{\text{Cov}(r_1, r_2)}{\sigma_1 \times \sigma_2}$$

• ρ is always in the range -1 to +1.

ρ and diversification in a 2 stock portfolio

What does -1 < ρ(1,2) < 1 imply?
 If -1 < ρ(1,2) < 1 then

There are some diversification benefits from combining stocks 1 and 2 into a portfolio.

 $\sigma_{p}^{2} = W_{1}^{2}\sigma_{1}^{2} + W_{2}^{2}\sigma_{2}^{2} + 2W_{1}W_{2}Cov(r_{1}r_{2})$

And since $Cov(r_1r_2) = \rho_{1,2}\sigma_1\sigma_2$

 $\sigma_{p}^{2} = W_{1}^{2}\sigma_{1}^{2} + W_{2}^{2}\sigma_{2}^{2} + 2W_{1}W_{2}\rho_{1,2}\sigma_{1}\sigma_{2}$

The effects of correlation & covariance on diversification

Asset B Portfolio AB

The effects of correlation & covariance on diversification

Naïve diversification

The power of diversification

Two-Security Portfolio: Risk

 $\sigma_{p}^{2} = W_{1}^{2}\sigma_{1}^{2} + W_{2}^{2}\sigma_{2}^{2} + 2W_{1}W_{2}Cov(r_{1}r_{2})$

Three-Security Portfolio n or Q = 3

$$\sigma_{p}^{2} = W_{1}^{2}\sigma_{1}^{2} + W_{2}^{2}\sigma_{2}^{2} + W_{3}^{2}\sigma_{3}^{2}$$

+ $2W_1W_2$ Cov(r_1r_2) + $2W_1W_3$ Cov(r_1r_3) + $2W_2W_3$ Cov(r_2r_3)

$$\sigma_p^2 = \sum_{I=1}^Q \sum_{J=1}^Q [W_I \ W_J \ Cov(r_I, r_J)]$$

Mean-Variance Criterion and Risky Portfolio Selection

Investment Opportunity Set for Stocks and Bonds with Various Correlations

Minimum Variance Combinations -1< ρ < +1

Choosing weights to minimize the portfolio variance

$$\sigma_{2}^{2}$$
 - Cov(r₁r₂)

$$W_{1} = \frac{1}{\sigma_{1}^{2} + \sigma_{2}^{2} - 2Cov(r_{1}r_{2})}$$

$$W_{2} = (1 - W_{1})$$

$$W_{3} =$$

Minimum Variance Combinations Example:

Stk 1 $E(r_1) = .10$ $\sigma_1 = .15$ Stk 2 $E(r_2) = .14$ $\sigma_2 = .20$ $\rho_{12} = .2$

Solve for:

- 1. optimal weights
- 2. expected portfolio return
- 3. portfolio standard deviation

Extending Concepts to <u>All Securities</u>

Consider:

- 1. All possible combinations of securities,
- 2. All possible weights
- 3. Combinations that provide the least risk for a given level of return and graph the result.

Extending Concepts to All Securities

Portfolio standard deviation

Extending Concepts to <u>All Securities</u>

•The optimal combinations result in lowest level of risk for a given return

•The optimal trade-off is described as the efficient frontier

•These portfolios are dominant

Including Riskless Investments

•The optimal combination becomes linear

•A single combination of risky and riskless assets will dominate

ALTERNATIVE CALS

The Capital Market Line or CML

6-22

Dominant CAL with a Risk-Free Investment (F)

- CAL(P) = Capital Market Line or CML dominates other lines because it has the the largest slope
- Slope = (E(r_p) rf) / σ_p (CML maximizes the slope or the return per unit of risk or it equivalently maximizes the Sharpe ratio)
- Regardless of risk preferences some combinations of P & F dominate

6-24