• What is happening in U.S. and global financial markets and why?

Some headlines:	Local Flow
"Gold Goes on a Print Run"	Foreign investors are taking
WSJ. Oct. 6	a bigger bite out of emerging-
"Africa's Investment Bug Is Proving Contagi	ous"
	Percentage of bonds under
WSJ. UCL. 6	foreign ownership
"Yield Hunt Leads to Currency Debt"	25%
WSJ. Oct. 5	20
	15
	10 Malaysia
	5 Thailand
	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2004 '05 '06 '07 '08 '09 '10
	Source: Asian Development Bank

SPDR S&P Emerging Latin America ETF --Performance Summary (continued)

COMPARISON OF CHANGE IN VALUE OF A \$10,000 INVESTMENT SPDR S&P EMERGING LATIN AMERICA ETF (BASED ON NET ASSET VALUE)

SPDR S&P Emerging Middle East & Africa ETF --Performance Summary (continued)

COMPARISON OF CHANGE IN VALUE OF A \$10,000 INVESTMENT SPDR S&P EMERGING MIDDLE EAST & AFRICA ETF (BASED ON NET ASSET VALUE)

Search for Yield?

"IMF Cuts 2011 Global Growth Prospects" WSJ, Oct. 6

"Dow Up 193.45, Boosted by Fed" WSJ, Oct.6 "Stocks Rally to Five-Month High" WSJ, Oct.6

"Dow Up 193.45, Boosted by Fed" WSJ, Oct.6 "Stocks Rally to Five-Month High" WSJ, Oct.6

Chapter 5

Risk and Return (Cont'd)

McGraw-Hill/Irwin

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

Quantifying Risk Aversion

$$E(r_p) - r_f = 0.5 \times A \times \sigma_p^2$$

 $E(r_p)$ = Expected return on portfolio p

r_f = the risk free rate

0.5 = Scale factor

A x σ_p^2 = Proportional risk premium

The larger A is, the larger will be the

investor's added return required to bear risk

Quantifying Risk Aversion

Rearranging the equation and solving for A

$$A = \frac{E(r_p) - r_f}{0.5 \times \sigma_p^2}$$

Many studies have concluded that investors' average risk aversion is between ______

2 and 4

Using A

$$A = \frac{E(r_{p}) - r_{f}}{0.5 \times \sigma_{p}^{2}}$$

What is the maximum A that an investor could have and still choose to invest in the risky portfolio P?

E(r)

$$E(r_p) = 14\%$$

 $r_f = 5\%$
 $r_f = 5\%$
 $CAL
(Capital
Allocation
Line)
 $E(r_p) - r_f = 9\%$
 $\sigma_{r_f} = 22\%$$

$$A = \frac{0.14 - 0.05}{0.5 \times 0.22^2} = 3.719$$

Maximum A = 3.719

"A" and Indifference Curves

- The A term can used to create indifference curves.
- Indifference curves describe different combinations of return and risk that provide equal utility (U) or satisfaction.
- $U = E[r] 1/2A\sigma_p^2$
- Indifference curves are curvilinear because they exhibit diminishing marginal utility of wealth.
 - The greater the A the steeper the indifference curve and all else equal, such investors will invest less in risky assets.
 - The smaller the A the flatter the indifference curve and all else equal, such investors will invest more in risky assets.

5-15

r_f = 5%

Capital Market Line

- •Passive Investment Strategies
- Indexing
- •ETFs
- "Spiders"

Chapter 6 Efficient Diversification

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

Diversification and Portfolio Risk

Market risk

- Systematic or Nondiversifiable
- Market risk is the risk that the value of an investment

will decrease due to moves in market factors.

Firm-specific risk

- Diversifiable or nonsystematic
- unique to each individual firm

Portfolio Risk as a Function of the Number of Stocks

Portfolio Risk as a Function of Number of Securities

Covariance and Correlation

•*Portfolio risk* depends on the correlation between the returns of the assets in the portfolio

•*Covariance* and the *correlation coefficient* provide a measure of the returns on two assets to vary

Two-Security Portfolio

$$E(r_p) = W_1r_1 + W_2r_2$$

- E(r_p) : portfolio return
- W_1 : weight on security 1
- W₁: weight on security 2
- : security 1 return
- ^r₁ : security 2 return

 \mathbf{r}_1

Two-Security Portfolio Return

```
E(r_{p}) = W_{1}r_{1} + W_{2}r_{2}W_{1} = 0.6W_{2} = 0.4r_{1} = 9.28\%r_{1} = 11.97\%
```

 $E(r_p) = 0.6(9.28\%) + 0.4(11.97\%) = 10.36\%$

Portfolio Variance and Standard Deviation

 $\sigma_p^{2} = \sum_{l=1}^{Q} \sum_{J=1}^{Q} [W_l \ W_J \ Cov(r_l,r_J)]$

 $W_I, W_J =$ Percentage of the total portfolio invested in stock I and J respectively Q = The total number of stocks in the portfolio

 $Cov(r_I, r_J) = Covariance$ of the returns of Stock I and Stock J

If I = J then Cov
$$(r_I, r_J) = \sigma_I^2$$
 & Cov $(r_I, r_J) = Cov(r_J, r_I)$

Variance of a Two Stock Portfolio:

$$\sigma_p^2 = W_1^2 \sigma_1^2 + 2W_1 W_2 Cov(r_1, r_2) + W_2^2 \sigma_2^2$$

Ex ante Covariance Calculation

 Using scenario analysis with probabilities the covariance can be calculated with the following formula:

$$Cov(r_S, r_B) = \sum_{i=1}^{S} p(i) \left[r_S(i) - \overline{r_S} \right] \left[r_B(i) - \overline{r_B} \right]$$

Expost Covariance calculations

$$Cov(r_1, r_2) = \frac{n}{n-1} \sum_{T=1}^{N} \frac{(r_{1,T} - \bar{r}_1) \times (r_{2,T} - \bar{r}_2)}{n}$$

 r_1 = average or expected return for stock 1

r₂ = average or expected return for stock 2

n = # of observations

• If when $r_1 > E[r_1]$, $r_2 > E[r_2]$, and when $r_1 < E[r_1]$, $r_2 < E[r_2]$, then COV will be

• If when $r_1 > E[r_1]$, $r_2 < E[r_2]$, and when $r_1 < E[r_1]$, $r_2 > E[r_2]$, then COV will be

negative

Which will "average away" more risk?

Covariance and correlation

- The problem with covariance
 - Covariance does not tell us the intensity of the comovement of the stock returns, only the direction.
 - We can standardize the covariance however and calculate the correlation coefficient which will tell us not only the direction but provides a scale to estimate the degree to which the stocks move together.