Chapter 5

Risk and Return (Cont'd)

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

Value at Risk (VaR)

				Column B x	Deviation from	Column B x
	Scenario	Prob.	HPR (%)	Column C	Mean Return	Squared Deviation
1	Severe recession	0.05	-37	-1.85	-47.00	110.45
2	Mild recession	0.25	-11	-2.75	-21.00	110.25
3	Normal growth	0.40	14	5.60	4.00	6.40
4	Boom	0.30	30	9.00	20.00	120.00
			Expected return =	10.00	Variance =	347.10
					Std(%)=	18 63

Value at Risk (VaR)

"Tail Risk"

Skew: measure of the asymmetry of a probability distribution

Kurtosis: measure of the fatness of the tails of a probability distribution

Implication?

σ is an incomplete risk measure

Leptokurtosis

History

Annual Holding Period Returns Statistics 1926-2008

From Table 5.3

	Geom.	Arith.	Excess		
Series	Mean%	Mean%	Return%	Kurt.	Skew.
World Stk	9.20	11.00	7.25	1.03	-0.16
US Lg. Stk	9.34	11.43	7.68	-0.10	-0.26
Sm. Stk	11.43	17.26	13.51	1.60	0.81
World Bnd	5.56	5.92	2.17	1.10	0.77
LT Bond	5.31	5.60	1.85	0.80	0.51

 Geometric mean: Best measure of compound historical return 	• Deviations from normality?
 Arithmetic Mean: Expected return 	

Deviations from Normality: Another Measure

	Portfolio		
	World Stock	US Small Stock	US Large Stock
Arithmetic Average	.1100	.1726	.1143
Geometric Average	.0920	.1143	.0934
Difference	.0180	.0483	.0209
1/2 Historical Variance	.0186	.0694	.0214

If returns are normally distributed then:

Arithmetic Average – Geometric Average = $\frac{1}{2}\sigma^2$

The comparisons above indicate that US Small Stocks may have

deviations from normality and therefore VaR may be an important risk measure for this class.

Risk Premium & Risk Aversion

- The risk free rate is the rate of return that can be earned with certainty.
- The risk premium is the difference between the expected return of a risky asset and the risk-free rate.

Excess Return or Risk Premium_{asset} = $E[r_p] - r_f$

Risk aversion is an investor's reluctance to accept risk.

Rates of return on stocks, bonds and bills, 1926-2008

$$=\frac{E(r_p)-r_f}{\sigma_p}$$

How is the aversion to accept risk overcome? By offering investors a higher risk premium.

Historical Real Returns & Sharpe Ratios

Series	Real Returns%	Sharpe Ratio
World Stk	6.00	0.37
US Lg. Stk	6.13	0.37
Sm. Stk	8.17	0.36
World Bnd	2.46	0.24
LT Bond	2.22	0.24

Capital Allocation

- Possible to split funds between risky and risk free assets
- Risk free asset: T-Bills
- Risky asset: stock (or a portfolio of stocks)

Capital Allocation

- Examine risk/return tradeoff
- Demonstrate how different degrees of risk aversion affect allocation between risky and risk free assets
- Learn how to use leverage to achieve the desired risk/return profile

Allocating Capital Between Risky & Risk-Free Assets

Example. Your total wealth is \$10,000. You put \$2,500 in risk free T-Bills and \$7,500 in a stock portfolio invested as follows:

Allocating Capital Between Risky & Risk-Free Assets

Weights in rp

— W, =	\$2,500 / \$7,500 =	33.33%
A	\$3,000 / \$7,500 =	40.00%
$-W_{B}=$	\$2,000 / \$7,500 =	<u>26.67%</u>
$-W_{c}=$		100.00%

Stock A \$2,500 Stock B \$3,000 Stock C \$2,000

The complete portfolio includes the riskless

investment and r_p.

Your total wealth is \$10,000. You put \$2,500 in risk free T-Bills and \$7,500 in a stock portfolio invested as follows

$$W_{rf} = 25\%/_{rp} =$$

In the complete portfolio

 $W_A = 0.75 \times 33.33\% = 25\%;$

```
W_{\rm B} = 0.75 \times 40.00\% = 30\%
```

 $W_c = 0.75 \times 26.67\% = 20\%;$ $W_{rf} = 25\%$

75%

Example

$$r_f = 5\%$$
 $\sigma_{rf} = 0\%$

$$E(r_p) = 14\%$$
 $\sigma_{rp} = 22\%$

$$y = \% \text{ in } r_p$$
 (1-y) = % in rf

Expected Returns for Combinations

$$E(r_{c}) = yE(r_{p}) + (1 - y)r_{f}$$

$$\sigma_{c} = y\sigma_{rp} + (1 - y)\sigma_{rf}$$

 $E(r_c) =$ Return for complete or combined portfolio

For example, let $y = $ 0.75		
E(r _c) = (.75 x E(r _c) = .1175 or 1	.14) + (.2 .1.75%	5 x .05)

r _f = 5%	σ _{rf} = 0%
E(r _p) = 14%	σ _{rp} = 22%
y = % in r _p	(1-y) = % in rf

 $\sigma_{c} = y\sigma_{rp} + (1-y)\sigma_{rf}$ $\sigma_{c} = (0.75 \times 0.22) + (0.25 \times 0) = 0.165 \text{ or } 16.5\%$

Complete portfolio

$$E(r_{c}) = yE(r_{p}) + (1 - y)rf$$

$$\sigma_{c} = y\sigma_{rp}$$

Combinations Without Leverage

			r _f = 5%	σ _{rf} = 0%		
			E(r _p) = 14%	σ_{rp} = 22%		
Since σ _{rf} = 0			y = % in r _p	(1-y) = % in rf		
$\sigma_{c} = y \sigma_{p}$	$E(r_c) = yE(r_c)$ y = .75	r _p) + (1 -	y)rf			
If y = .75, then	E(r _c) =	(.75)(.14	4) + (.25)(.05) = 1	1.75%		
σ_c= 75(.22) = 16.5%	y = 1					
	$E(r_c) =$					
If y = 1 $\sigma_c = 1(.22) = 22\%$	y = 0 E(r _c) =	(1)(.14)	+ (0)(.05) = 14.00)%		

If y = 0 $\sigma_c = 0(.22) = 0\%$

(0)(.14) + (1)(.05) = 5.00%

Using Leverage with Capital Allocation Line

Borrow at the Risk-Free Rate and invest in stock

Using 50% Leverage (y = 1.5).

 $E(r_c) = (1.5)(.14) + (-.5)(.05) = 0.185 = 18.5\%$

 $\sigma_{\rm c}$ = (1.5) (.22) = 0.33 or 33%

r _f = 5%	σ _{rf} = 0%
E(r _p) = 14%	σ _{rp} = 22%
y = % in r _p	(1-y) = % in rf

Risk Aversion and Allocation

- Greater levels of risk aversion lead investors to choose larger proportions of the risk free rate
 - Lower levels of risk aversion lead investors to choose larger proportions of the portfolio of risky assets Willingness to accept high levels of risk for high levels of returns would result in leveraged combinations

5-26