Chapter 17

Futures Markets and Risk Management

Trading Strategies

Speculation -

- short believe price will fall
- long believe price will rise

Hedging -

- long hedge protecting against a rise in price
- short hedge protecting against a fall in price

Futures Markets

- Eurex owned by Deutsche Borse and Swiss exchange, electronic, largest in the world
- CBOT adopted Eurex's trading platform for Treasury futures
- CME use Globex trading sysyem
- In 2007 CBOT and CME merged into CME Group

Figure 17.3 Trading With and Without a Clearinghouse

The clearinghouse eliminates counterparty default risk; this allows anonymous trading since no credit evaluation is needed. Without this feature you would not have liquid markets.

The Clearinghouse and Open Interest

- Clearinghouse acts as a party to all buyers and sellers.
 - A futures participant is obligated to make or take delivery at contract maturity
- Closing out positions
 - Reversing the trade
 - Take or make delivery
 - Most trades are reversed and do <u>not</u> involve actual delivery
- Open Interest
 - The number of contracts opened that have not been offset with a reversing trade: measure of future liquidity

Marking to Market and the Margin Account

• Initial Margin: funds that must be deposited in a margin account to provide capital to absorb losses

• Marking to Market: each day the profits or losses are realized and reflected in the margin account.

• Maintenance or variance margin: an established value below which a trader's margin may not fall.

Margin Arrangements

 Margin call occurs when the maintenance margin is reached, broker will ask for additional margin funds

Marking to Market Example

Day	Futures Price
0 (today)	\$12.10
1	12.20
2	12.25
3	12.18
4	12.18
5 (delivery)	12.21

Day	Profit (loss) per Ounce	\times 5,000 Ounces/Contract = Daily Proceeds
1	\$12.20 - \$12.10 = \$.10	\$500
2	12.25 - 12.20 = .05	250
3	12.18 - 12.25 =07	-350
4	12.18 - 12.18 = 0	0
5	12.21 - 12.18 = .03	150
	$F_t - F_{t-1}$ at each point in	time Sum = \$550

More on futures contracts

• Convergence of Price: As maturity approaches the spot and futures price converge

$F_T = S_T$

- Delivery: Specifications of when and where delivery takes place and what can be delivered
- Cash Settlement: Some contracts are settled in cash rather than delivering the underlying assets

Figure 17.4 Hedging Revenues Using Futures, Example 17.5 (Futures Price = \$39.48)

Insert Figure 17.4 here

Futures Pricing

- **Spot-futures parity theorem** two ways to acquire an asset for some date in the future
- Purchase it now and store it
- Take a long position in futures
- These two strategies must have the same market determined costs

Parity Example Using Gold

Strategy 1: Buy gold now at the spot price (S $_{0}$) and hold it until time T when it will be worth $S_{\rm T}$

Strategy 2: Enter a long position in gold futures today and invest enough funds in T-bills (F_0) so that it will cover the futures price of S_T

Parity Example Using Gold

$-S_0$	S_{T}
$-F_0/(1+r_f)^T$	$S_{ au} - F_0$ F_0
$-F_{0}/(1 + r_{f})^{T}$	S _T

Price of Futures with Parity

Since the strategies have the same flows at time T:

$$F_{O} / (1 + r_{f})^{T} = S_{O}$$

 $F_{O} = S_{O} (1 + r_{f})^{T}$

The futures price has to equal the carrying cost of the gold

Deviations from parity arbitraged away:

Gold has spot price (S_0) of \$900, risk free rate is .5%. The a 6-month maturity contract should have a price of:

$$F_{O} = S_{O} (1 + r_{f})^{T} = $900(1.005)6 = $927.34.$$

Suppose instead six months maturity futures specify the price of \$928.

Action	Initial Cash Flow	Cash Flow at Time <i>T</i> (6 months)
Borrow \$900, repay with interest at time T	+\$900	$-\$900(1.005)^6 = -\927.34
Buy gold for \$900	-900	S_{T}
Enter short futures position ($F_0 = $ \$928)	0	$928 - S_{T}$
Total	\$ 0	\$.66

Deviations from parity arbitraged away:

Initial Cash Flow	Cash Flow at Time T
+ S ₀	$-S_0(1 + r_f)^T$
$-S_0$	S_{T}
0	$F_0 - S_T$
0	$F_0 - S_0(1 + r_f)^T$
	+S ₀