Chapter 7

Capital Asset Pricing and Arbitrage Pricing Theory

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.

Disequilibrium Example

Suppose a security with a β of <u>1.25</u> is offering an expected return of <u>15%</u>

According to the SML, the E(r) should be <u>13%</u>

E(r) = 0.03 + 1.25(.08) = 13%

Is the security under or overpriced?

Underpriced: It is offering too high of a rate of return for its level of risk

The difference between the return required for the risk level as measured by the CAPM in this case and the actual return is called the stock's alpha denoted by $\underline{\alpha}$

What is the $\underline{\alpha}$ in this case?

 α = +2% Positive α is good, negative α is bad

+ α gives the buyer a + abnormal return

More on alpha and beta

$$\begin{split} \mathsf{E}(\mathsf{r}_{\mathsf{M}}) &= \mathbf{14\%} \\ \beta_{\mathsf{S}} &= \mathbf{1.5} \\ \mathsf{r}_{\mathsf{f}} &= \mathbf{5\%} \\ \mathsf{Required \ return} &= \mathsf{r}_{\mathsf{f}} + \beta_{\mathsf{S}} \left[\mathsf{E}(\mathsf{r}_{\mathsf{M}}) - \mathsf{r}_{\mathsf{f}}\right] \\ &= \mathbf{5} + \mathbf{1.5} \left[\mathbf{14} - \mathbf{5}\right] = \mathbf{18.5\%} \end{split}$$

If you believe the stock will actually provide a return of <u>17%</u>, what is the implied alpha?

α = **17% - 18.5% = -1.5%**

A stock with a negative alpha plots below the SML & gives the buyer a negative abnormal

return

Portfolio Betas

 $\beta_{\mathsf{P}} = \Sigma \mathbf{W}_{i} \beta_{i}$

If you put half your money in a stock with a beta of 1.5 and 30% of your money in a stock with a beta of 0.9 and the rest in T-bills, what is the portfolio beta?

$$\beta_{P} = 0.50(1.5) + 0.30(0.9) + 0.20(0) = 1.02$$

 All portfolio beta expected return combinations should also fall on the SML.

• All (E(r_i) – rf) / β_i should be the same for all stocks.

Measuring Beta

Concept:

We need to estimate the relationship between the security and the "Market" portfolio.

• Method

Can calculate the Security Characteristic Line or SCI using historical time series excess returns of the security, and unfortunately, a proxy for the Market portfolio.

GM Excess Returns May 00 to April 05

Month	GM ER	Rm-Rf	Month	GM ER	Rm-Rf	Regression	of GM ER	and Rm-Rf f	rom FF				
Apr-05	-0.12382	-0.0258	Nov-02	0.192943	0.0601								
Mar-05	-0.17793	-0.0187	Oct-02	-0.14659	0.079	SUMMARY		"Tru	e" ß is t	betweer	n 0 81		
Feb-05	-0.03366	0.019	Sep-02	-0.1886	-0.1044	001111/0111	0011 01				10.01		
Jan-05	-0.0831	-0.0275	Aug-02	0.026767	0.0042	D .	01.11.11	and	1.74!				
Dec-04	0.036243	0.0339	Jul-02	-0.13052	-0.0825	Regression	n Statistics						
Nov-04	-0.00072	0.0456	Jun-02	-0.14143	-0.0717	Multiple R	0.585804	If rf :	= 5% an	d r – r	<i>c</i> = 6%		
Oct-04	-0.09401	0.0145	May-02	-0.03264	-0.0138	R Square	0.343166		then we would predict GM's				
Sep-04	0.026922	0.0162	Apr-02	0.059749	-0.0527	Adjusted R	0.331841	then					
Aug-04	-0.04367	0.0006	Mar-02	0.139472	0.0431	Standard F	0.085658	rotu					
Jul-04	-0.07518	-0.0404	Feb-02	0.034513	-0.0231	Obconvatio	60						
Jun-04	0.025363	0.0185	Jan-02	0.050863	-0.0144	Observatio							
May-04	-0.04368	0.0124	Dec-01	-0.02357	0.0152			5% -	· 1.276(6	o%) = 1⊿	2.00%		
Apr-04	0.002798	-0.0184	Nov-01	0.201216	0.0764	ANOVA							
Mar-04	-0.01887	-0.0129	Oct-01	-0.03866	0.0247		df	SS	MS	F	ignificance	F	
Feb-04	-0.03218	0.0133	Sep-01	-0.21868	-0.0929	Regression	1	0.222336	0.222336	30.30238	8.79E-07		
Jan-04	-0.07041	0.0207	Aug-01	-0.14202	-0.0637	Residual	58	0 42556	0.007337				
Dec-03	0.247489	0.0436	Jul-01	-0.01465	-0.0212	Total	50	0.647806	0.007007				
Nov-03	0.001786	0.0129	Jun-01	0.127956	-0.0193	Total		0.047090					
Oct-03	0.041728	0.0607	May-01	0.035048	0.0074								
Sep-03	-0.00494	-0.0124	Apr-01	0.053779	0.0808	(Coefficients and ard Erro t Stat		P-value	Lower 95%	<u>Upper 95%</u>		
Aug-03	0.097241	0.0227	Mar-01	-0.03135	-0.0728	Intercept	-0.0143	0.011077	-1.29047	0.202008	-0.03647	0.007879	
Jul-03	0.038956	0.0236	Feb-01	-0.01125	-0.1	Rm-Rf	1.276019	0.231803	5.50476	8.79E-07	0.812016	1.740022	
Jun-03	0.018181	0.0137	Jan-01	0.049825	0.0336			D	14				
May-03	-0.02088	0.0608	Dec-00	0.02409	0.0126	Regr	essior	ı Resi	ilts:				
Apr-03	0.07132	0.0816	Nov-00	-0.20852	-0.1063	r	r = 0	+ R/r	- r)		\sim	ß	
Mar-03	-0.0054	0.0106	Oct-00	-0.04947	-0.0253	<u> </u>	$-i_f = 0$	י ו א (ו _ו	m [–] 'f/		u	12	
Feb-03	-0.07146	-0.0179	Sep-00	-0.07658	-0.0556					0.04	40	1 076	
Jan-03	-0.01537	-0.0251	Aug-00	0.224185	0.0703	Esti	mated	l coett	icient	-0.0	43	1.270	
Dec-02	-0.07254	-0.0582	Jul-00	-0.02449	-0.0247	Ctd	0 KK 0 K	of ooti	moto	0.01	108 0	2318	
			Jun-00	-0.18276	0.0441	<u> 5</u> ta	error	oresu	mate	0.01	100 0	.2310	
			May-00	-0.25065	-0.0425	0 =	0 5858						
							0.0000						
-						$ R^2 =$	(Adjust	ed) = 33	.18%				
						σ =	8 57%						
Protest in						v _e −						7-9	

Evaluating the CAPM

• The CAPM is "false" based on the validity of its assumptions

The CAPM could still be a useful predictor of expecte returns. That is an empirical question.

- Huge measurability problems because the market portfolio is unobservable.
- Conclusion: As a theory the CAPM is untestable.

Evaluating the CAPM

• However, the **practicality** of the CAPM is testable.

Betas are <u>not as useful</u> at predicting returns as other measurable factors may be.

 More advanced versions of the CAPM that do a better job at <u>estimating the market portfolio</u> are useful at predicting stock returns.

Still widely used and well understood.

Evaluating the CAPM

- The principles we learn from the CAPM are still entirely valid.
 - Investors should diversify.
 - Systematic risk is the risk that matters.
 - A well diversified risky portfolio can be suitable for a wide range of investors.
 - The risky portfolio would have to be adjusted for tax and liquidity differences.
 - Differences in risk tolerances can be handled by
 - changing the asset allocation decisions in the complete portfolio.

Even if the CAPM is "false," the markets can still be -"efficient."

